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ABSTRACT 

Using the operator product expansion I show that perturbative QCD correc- 

tions to the hadronic decay width of the Higgs boson can be calculated without 

encountering mass singularities. The result is given in terms of the “running quark 

mass” of the renormalization group and calculable corrections in powers of 

l/ln(M2/A2). The next-to-leading order correction amounts to about 32% for the 

Higgs mass M : 50 GeV. 
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I. INTRODUCTION 

The successful W(2) x U(I) model for the weak and electromagnetic interac- 

tions’ as well as other theoretical possibilities of unification make it urgent to 

explore Higgs bosons experimentaily.2 Recently Braaten and Leveille calculated 

gluon radiative corrections to the Higgs decay into a quark-antiquark pair.3 They 

found mass singularities which invalidate the perturbative calculation. By summing 

leading logarithms they obtained the decay rate formula in which the quark mass is 

replaced by the running quark mass evaluated at the Higgs mass. 

The purpose of this paper is to show that perturbative QCD corrections for 

the hadronic decay of the Higgs boson can be calculated unambiguously without 

encountering mass singularities. I will give a precise formulation in terms of the 

operator product expansion and the renormalization group equation, and presenf the 

result of the next-to-leading order QCD correction. The correction is about 20% 

for a 50 GeV Higgs boson. 

In the next section I formulate the renormalizatioti group equation for scalar 

current correlation functions and present the leading and the next-to-leading order 

perturbative QCD results for the Higgs decay width. Section III is devoted to a 

brief discussion. 
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II. RENORMALIZATION GROUP EQUATION 

The standard SU(2) x U(1) modei’ gives the interaction Lagrangian of the 

decay of the Higgs boson 41 into a pair of quarks $ as 

L = -gyij$+ = -gyJ. $I (1) 

where gy and J are the Yukawa coupling and the scalar current. The lowest order 

decay width for each quark flavor of mass m is given by 

r : ,g;(,2$3’2 (2) 

where M is the Higgs mass and the color factor 3 is included. This formula can be 

obtained from the imaginary part of the quark loop diagram in Fig. 1, which is very 

similar to the well-known process e+e-+ q{. One can easily recognize that 

perturbative QCD corrections to the hadronic decay of the Higgs boson can be 

treated almost analogously to the e+e- annihilation into hadrons using the operator 

product expansion. 4-6 

Let us introduce the correlation function of scalar currents with the four 

momentum q u 

TI : i 
/ 

d4xeiqx< 0 1 T(J(x)J(O)) IO > 

whose imaginary part gives the Higgs decay width 

(3) 

2 
gY r =MIm” 

I q2,M2 
(4) 
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Similarly to the vacuum polarization due to the electromagnetic current,5-6 n 

requires subtractive renormalization. It also needs multiplicative renormalization 

because the scalar current is not conserved in contrast to the electromagnetic 

current. The renormalized m in 4-c dimensions is obtained from the bare one TT 0 

2 

dq 
2 ZY 

, g, w vi) = 22 nO(q2, go, mo, E) - q2u-‘K(g, E) - m2u-cL(g, E ) (5) 
2 

where p is the renormalization mass scale and the subtractive counter terms are 

given as a sum of simple poles in E in the minimal subtraction scheme’ 

m 

K(g, E) = 1 Ki(g)/ci , L(g, E) = i Li(g)/ci . _ 6) 

i=l i=l 

The renormalized QCD coupling constant g, quark mass m, quark field $, and 

Yukawa coupling gy are related to bare ones (with subscript 0) by renormalization 

constants as 

!J 4zg = z-lg 
go’ 

m = 2 -‘rn m 0 

JI = Jf2Jlo , !J E12gy = gy z;‘z2 
0 

(8) 

Neglecting nonperturbative effects,’ TI is nothing but the coefficient function of 

the unit operator in the operator product expansion of the T-product of scalar 

currents. 

Following the standard procedure,6 I obtain the renormalization group 

equation for TI from the u independence of no for fixed go, mo, and E 
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[ 

a 
P& 

a + 6ea% +ymmz +2y 1 dq2, g, m, V) = q2KCg) + m2ilg) (9) 

where the @-function and anomalous dimensions are given, as usual 

a 
6 q -gp TV In Zg 

ym’ au -ua InZm 

y = - I.$~ In (Z,/Z,) (10) 

and inhomogeneous terms are given in terms of I/E pole terms of the subtractive 

counter terms in eq. (6) 

Ktg) = ax&k2 
ag2 ’ 

i(g) q ag2L’(R, 

ag2 
(II) 

Using the dimensional analysis and the solution of the renormalization group 

equation I can relate 71 at q2 to II at q -2- 2-2t = q e 

2 2t nCq e 2t -2 , g, m, u) = e n(q , g, me -t , pe-‘) 

q eZt n(G2, z(t), &)eSt, u)A(t) 
t 

- G2@$tl)) + rii2(tt)e-2t’- - L&k’))) Act’) 1 (12) 

where 



6 FERMILAB-Pub-80/51-THY 

t = iln (q2fi2) (13) 

v = 8(&J) , $0) = g (14) 

ariiw - = iY~t)y,@t)) , $0) = m at (15) 

(16) 

The running quark mass m(M) at M is defined by the solution of eq. (IS) for 

t=InM/p 

m(M) = r$t =In M/p) = (J In M/U 
m.exp 

0 
y ,(#)kJt’ . 

) (17) 

Since I am interested in the lowest order in gc but to all orders in g, I obtain 

zy/z2 = zm ) Y’Y m (18) 

To evaluate the asymptotic behavior of TI, I use the perturbative expansion 

8@ = - 

-2 
Y,@ = Y@ = LY + 

16~~ ’ 

-2 
K@) = KO+-gK I612 I + -*- 

-2 
i(g) = ~~ + _g L + . . . 

16n2 ’ 
(19) 
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Let US evaluate the asymptotic behavior for q*+ -m fixing G2 = -1~~. Leading 

contributions come from the inhomogeneous terms K. and Lo similarly to the efe- 

case 

=(q*, g, m, u) + -q* --m 
*yo’80 Lot 

*Yg * 
(20) 

I+- 
80 

To obtain the Higgs decay width I take the imaginary part of analytically continued 

n at q* = M2 (Higgs rnz 3s.s) 

Im n(q* = M*, g, m, p) = 
‘,$it* M* 
- In- 
16i~* p2 

)1”” 3 (M2Ko + m*( 5 ln-$,‘““i) . (21) 

The yo/Bo power of In M*/p* can be absorbed into the running quark mass (eq. 

(17)) which becomes in the leading order 

m(M) = me ( $In$ )lO’*B” . (22) 

In fact the Yukawa coupling in eq. (4) is given by the Fermi constant GF and the 

quark mass in the standard W(2) x U(l) model1 

g y = b?CF)Km (23) 

Inserting eqs. (*I)-(23) into eq. (4) I obtain the Higgs decay width in the leading 

order 

r = "KO 
2 h!fiGF[ m(M) I *{I+? (Fig)‘1 

= ‘Fn fiG,[ m(M) I* { l-6(Ep) ‘1 (24) 
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where the leading inhomogeneous terms K o and Lo are calculated from the quark 

loop diagram in Fig. I using eqs. (6), (11) and (19) 

(25) 

The leading order result in eq. (24) is the same as the Born term eq. (2) (without 

gluon corrections) except: (i) the quark mass m (of the Yukawa coupling) in the 

Born term is replaced by the running quark mass m(M) evaluated at the Higgs mass, 

and (ii) the.quark mass in the phase space factor (1 - 4m2/M2)3’2 is replaced by the 

running quark mass m(M) and up to the first term in the (m(M)/M)* power expansion 

is retained. Terms of order (m(M)/M)*“, n ~2, are contained in the first term 

nCj*, i(t), tii(t)e-’ , p A(t) ) in eq. (12) and should correspond to contributions from 

operators m 2n 
l 1 in the operator product expansion. 

The renormalization group analysis allows precise predictions to any desired 

order in the running coupling constant g. As an example I will present the next-to- 

leading order correction. The B-function’ and the anomalous dimension 10 y m in 

eq. (19) have been calculated up to the next-to-leading order in the minimal 

subtraction scheme 

B. = II-$Nf 38 
, BI = IO*-5Nf 

y. = -8 , y1 = -108+yNf (26) 
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where Nf is the number of quark flavors. I calculate two-loop diagrams in Fig. 2 

to obtain the next-to-leading inhomogeneous term K, in eq. (19) (for simplicity I 

neglected the mass in the loop, i.e. c(g) ~0) 

K, = 2 
.* 

I also need the finite (nonlogarithmic) part of TI 

II (q* = -p*, g = 0, m = 0, u ) : (-u2)Ko* B 

fi(ln 4s - y,) + I for MS scheme 
B = 

1 for m scheme 

(27) 

. (28) 

where the In 4s - y E term in the minimal subtraction (MS) scheme is absorbed into 

the redefinition of the QCD scale parameter A in the m scheme of ref. 11. Other 

quantities in eqs. (26) and (27) is unchanged in the FJis scheme. I can now expand 

the solution (12) of the renormalization group equation in powers of (In M*/n*I-I 

and obtain the Higgs decay width in the next-to-leading order 

r q ‘g fiG,[m(M)]* . (29) 

Taking Higgs mass M = 50 GeV, Nf = 6, and A q 0.5 GeV for m scheme, I obtain 

+35% correction (the second term in the curly bracket). I can also expand the 

running quark mass m(M) defined in eq. (17) in powers of (In M*/A*)-I 
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(30) 

6 = m/F(p) (32) 

In this expansion I obtain the Higgs decay width 

r q 3gfiG 8n F[ i%(In-$j’“‘2Bo]2 l C 

C-l+ ’ 
i 

K1 Y081 M2 YoB,- Ypo ’ 
M2 

Boln- 
A2 

q - *YoB + Tight + Bo2 ) . (33) 

The correction factor C becomes 1.32 for the same parameters (M q 50 GeV, 

Nf = 6, A = 0.5 GeV, E scheme). The reduction of the magnitude of perturbative 

2 21 corrections in the (In M /A )- expansion is also noted in other processes. 12 
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I have shown how to calculate perturbative QCD corrections to the Higgs 

decay without encountering mass singularities at all. In practical applications, 

however, there remains two problems: (9 Since Higgs boson decays preferentially 

to heavy quarks, it may be important to incorporate the phase space kinematical 

factor (1 - 4m2/M213’* in eq. (2) and (ii) The magnitude of quark masses is not 

accurately known. 

As for the point (i), I was able to reproduce explicitly the phase space factor 

for the running quark mass up to the first term in the (m(M)/M)’ power expansion. 

I expect that higher order terms can also be reproduced by using the operator 

product expansion. Therefore it seems most reasonable to use the phase space 

factor (1 - (2m(M)/M)* for the running quark mass m(M) together with the pertur- 

bative QCD correction factors such as eq. (33). 

As for the point (ii), one should probably turn the argument around: our 

formula can be employed to deduce from the Higgs decay width the running quark 

mass defined in eq. (17) which can be used, e.g. in the discussion of grand unified 

theories.1°‘13 

One can treat Higgs bosons with y5 coupling or charged Higgs bosons, 

analogously. One can calculate perturbative QCD corrections to inclusive hadron 

distributions from the Higgs decay using similar renormalization group analyses 

with the cut vertex formalism 14 instead of the operator product expansion. 

While this paper was being typed, I received a preprint by T. Inami and 

T. Kubota” which discussed the Higgs decay from a similar point of view and gave 

the next-to-leading order QCD correction in agreement with my result (33), but did 

not work out the (m(M)/M)2 term (in my eq. (24)). 
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Fig. 2: 

FIGURE CAPTIONS 

The lowest order diagram for the correlation function TI of 

scalar currents. 

The g* order diagrams for the correlation function TI of scalar 

currents. 



--- 
c-> 

-mm 
T 

Fig. I 
I 

--w 
e 

--- + me- a em- 

+ --- -a se- 
Fig. 2 

I 


